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Air temperature (Ta) stations have limited spatial coverage, particularly in rural areas. Since temperature can
vary greatly both spatially and temporally, Ta stations are often inadequate for studies on the health effects of ex-
treme temperature and climate change. Satellites can provide us with daily physical surface temperature (Ts)
measurements, enabling us to estimate daily Ta. In this study, we aimed to extend our previous work on
predicting Ta from Ts in Massachusetts by predicting 24 h Ta means on a 1 km grid across the Northeast and
Mid-Atlantic states, extending both the temporal and spatial coverage, improving upon the methodology and
validating our model in other geographical regions across the Northeastern part of the USA. We used mixed
model regressions to first calibrate Ts and Ta measurements, regressing Ta measurements against day-specific
random intercepts, and fixed and random Ts slopes. Then to capture the ability of neighboring cells to fill in
the cells with missing Ts values, we regress the Ta predicted from the first mixed effects model against the
mean of the Tameasurements on that day, separately for each grid cell. Out-of-sample tenfold cross-validation
was used to quantify the accuracy of our predictions. Our model performance was excellent for both days with
available Ts and days without Ts observations (mean out-of-sample R2 = 0.95 and R2 = 0.94 respectively). We
demonstrate how Ts can be used reliably to predict daily Ta at high resolution in large geographical areas even
in non-retrieval days while reducing exposure measurement error.

© 2014 Elsevier Inc. All rights reserved.
1. Introduction

Spatially distributed near-surface air temperature (Ta) is a commonly
used and important variable in various scientificfields including climatol-
ogy (Smith et al., 1988;Watson & Albritton, 2001), study of vector-borne
disease (Garske, Ferguson, & Ghani, 2013; Goetz, Prince, & Small, 2000)
environmental and ecological studies (Zanobetti & Schwartz, 2008), hy-
drological studies (Wang, Koike, Yang, & Yeh, 2009) and many others.
One particular field of importance is epidemiology and public health.
Multiple studies in recent years have shown that Ta plays an important
role in epidemiological studies. This growing body of evidence clearly
show that Ta has a strong association with adverse health outcomes,
especially for cardiovascular diseases (Halonen, Zanobetti, Sparrow,
Vokonas, & Schwartz, 2010; Medina-Ramón, Zanobetti, Cavanagh, &
Schwartz, 2006; Ren et al., 2011). Since temperature can vary greatly
both spatially and temporally, Ta stations with limited spatial coverage
are often inadequate for such epidemiological studies looking at extreme
temperature (both warm and cold) and climate change.

Changes in climate will lead to warmer temperatures and more ex-
treme weather events, which are associated with increased morbidity
and mortality in sensitive populations (Ostro, Roth, Green, & Basu,
2009), both in heat waves and less extreme events (Basu, Feng, &
Ostro, 2008; Ostro et al., 2009; Zanobetti & Schwartz, 2008). Most of
the epidemiological studies on health effects of temperature have
been conducted using large geographical areas as units of the analysis
(state, nationwide), thus potentially biasing the health effects risks
estimates due to exposuremeasurement error (i.e., assigning inaccurate
exposure to each study participant) (Zeger et al., 2000).

Ta is commonly measured at a reference height of 2 m above the
ground in most weather stations (NCDC, 2010), which are dependent
on the regional infrastructure for weather data collection. These mea-
surements that are collected as point samples are not optimal for cap-
turing the spatial variability of the climatic conditions within each
region (Vancutsem, Ceccato, Dinku, & Connor, 2010). The spatial infor-
mation available on air temperature is thus often very limited, especially
where themonitoring density is low (such as rural areas), since Ta is af-
fected by properties that vary greatly in both space and time (Prihodko
&Goward, 1997). These “out of coverage” rural areas lack detailed unbi-
ased Ta readings and people who live in more densely populated areas
are unlikely to be representative of those who do not. Ta sites cannot
measure high spatial resolution exposure for epidemiology studies,
which introduces exposure error, and likely biases the health effect
estimates downward (Zeger et al., 2000). In addition, the urban heat
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island effect results in temperature variations over large spatial scales in
urban areas depending on the relative amounts of hard surface versus
green space.

This lack of high resolution continuous spatio-temporal measure-
ments, has resulted in studies looking into methods for addressing
this lack of data. Some studies have looked at interpolation techniques
such as global interpolators, kriging and inverse density weighting
(IDW) among others (Florio, Lele, Chang, Sterner, & Glass, 2004;
Vicente-Serrano, Saz-Sánchez, & Cuadrat, 2003; Yang, Wang, & August,
2004). Vicente-Serrano et al. (2003) presents a detailed comparative
analysis predicting temperature and precipitation from various statisti-
cal methods including multiple interpolation methods (such as kriging,
co-kriging, and global interpolators). The study is conducted in an area
with significant geographic differences and spatial climatic diversity
(the middle Ebro Valley in the northeast of Spain). The accuracy of
their comprehensive temperature analysis varied greatly ranging from
R2 = 0.39 for the co-kriging analysis and up to R2 = 0.75 for the
regression-based method. They conclude by stating that though there
were small differences in estimation accuracy between the final regres-
sionmodel and themaps obtained from local interpolations, it is prefer-
able to use the empirical regression model since it provides a more
accurate reflection of thermal diversity at a local scale. In addition,
regression-based methods are not as conditioned by the location of
the Ta stations as local and geostatistical methods are, which give better
predictions in areas with low spatial density of available data. Florio
et al. (2004) also looked at different spatially dependent (kriging)
models and multiple linear regressions to model Ta. Their results
show that the kriging models predicted temperature better than the
multiple regression models (0.9C error). They do state however, that
incorporating satellite data in their kriging models would result
in better model performance under optimal day conditions. These
station-based interpolation techniques suffer from arbitrary locations
of weather stations (Lennon & Turner, 1995) and often lack continuous
daily data accessibility.

Satellite surface temperature data (Ts) is defined as the skin temper-
ature of the ground,which is the actual reading from surface levelwhich
the satellite “sees”when it looks through the atmosphere to the ground.
Ts data can provide actual physical measurements across the entire
study area which can improve daily Ta predictions.

In recent years researchers have started using satellite-based
methods due to the ability to get spatial estimates of Ts at high temporal
(daily) and spatial resolution (1 km) (Vancutsem et al., 2010; Zhang
et al., 2013; Zhu, Lű, & Jia, 2013). Whereas Ta measurements provide
point data at a relatively coarse resolution, satellite based Ts data can
be used for a spatially continuous and high resolution view of the land
Ts. The ability to obtain both high spatial and temporal resolutions Ts
data is a significant advantage of satellite observations over traditional
climatic methods.

Several studies correlated daytime Ts satellite observations with Ta
at ground meteorological stations across non-urban areas. Most of the
studies focus on predicting minimum Ta. Dousset (Dousset, 1989), has
shown that Ts correlations with Ta are significantly better during the
night since microscale advection is reduced. During the day hours
when there is direct solar illumination, additional factors lead to more
complex interaction between Ta and Ts including sky view factor,
thermal properties of the underlined surfaces, satellite–sun geometry,
surface geometry, and weather conditions. Both Fu et al. (2011) and
Vancutsem et al. (2010) explored estimating Ta using MODIS Ts data
withmoderate success. For example in Fu's study amoderate predictive
accuracywas presented (R2 N 0.55, p b 0.01). Recently, Zhu et al. (2013)
explored estimating daily maximum and minimum Ta using MODIS Ts.
In order to improve the accuracy of the estimation of dailymaximum Ta,
they used the temperature–vegetation index (TVX)method and applied
it to improve the dailymaximum Ta accuracy. They report a RMSE value
of 3.79 °C and model fits (R2) of 0.83. Comparisons in urban areas have
been few.
All previous studies either lack complete spatial and temporal pre-
dictions, present relatively low predictive power or do not predict
daily 24 hour mean Ta predictions. We recently published a study
(Kloog, Chudnovsky, Koutrakis, & Schwartz, 2012) on the temporal
and spatial assessment of minimum Ta using MODIS Ts measurements
in Massachusetts, USA. We generated daily Ta predictions for 2003
evenwhen Ts data was unavailable. Our model performancewas excel-
lent for both days with available Ts and days without Ts observations
(mean out-of-sample R2 = 0.95 and R2 = 0.94 respectively). A key dif-
ference from the previous approaches was the use of a mixed model
allowing the regression coefficient between Ts and Ta to vary by day,
resulting in considerably higher R2.

In this paper we extend our previous work (Kloog et al., 2012) in
Massachusetts by looking at predicting 24 h Ta means based on both
night and day Ts data, extending both the temporal and spatial coverage
of the model, improving upon the methodology and validating our
model across the Northeastern part of the USA. Specifically, we devel-
oped new methodologies to better predict Ta over a large areas taking
into account the considerable differences in such large geographical re-
gions (covering the entire Northeast andMid-Atlantic areas of the USA)
while predictingmean 24 h Ta as opposed tominimum air temperature
in our previous model. We also examine performance for day and night
temperatures, and incorporate monitored Ta within 60 km buffers
around each grid cell to fill in for days with missing Ts. We incorporate
land use regression, and meteorological variables to predict daily 24 h
mean Ta for grid cells even when satellite Tsmeasures are not available.

2. Methods

2.1. Study domain

Our study region included the entire Northeastern part of the USA
(Fig. 1), and includes many urban areas (notably New York, Boston,
Washington, DC and Philadelphia) and rural towns, large forested re-
gions, water bodies, mountains and the Atlantic sea shoreline.

2.2. Surface temperature and emissivity

We obtained daily Ts data from the Moderate Resolution Imaging
Spectroradiometer (MODIS) satellite (Terra), with a spatial resolution
of 1 × 1 km. We used the MOD11_A1 product (Terra land surface tem-
perature & emissivity) used in many previous studies (Kloog et al.,
2012; Wan, 2008) since its product is publicly available, provides daily
Ts at a high spatial resolution and covers large areas across the USA.
Emissivity was obtained since it's a parameter that can influence Ts
measurements by causing a reduction of surface-emitted radiance. In
addition, the anisotropy of reflectivity and emissivity may reduce or in-
crease the total radiance from the surface (Weng, Lu, & Schubring,
2004). Emissivity is available in the MODIS MOD11_A1 product. The
radiometric temperature was corrected for atmospheric transmission
to account for the kinetic temperature of the object using the following
formula (Jensen, 2009):

Tkin ¼ Trad=Emmisivity λð Þ1=4

where Tkin is related to the true kinetic temperature (and further denoted
here as Ts) and Trad is the radiant temperature of an object recorded by a
remote sensor. More details about MODIS Ts data can be found in previ-
ous papers (Kloog et al., 2012; Wan, 2008).

2.3. Meteorological data

Daily data for Ta across the Northeast U.S. for 2000–2011 were ob-
tained from two sources: The National Climatic Data Center (NCDC)
andWeather underground Inc. (WU). The spatial coverage of NCDC sta-
tions was lacking (325 stations across all study area) and thus to



Fig. 1.Map of the study area showing all available weather underground and NCDC Air temperature monitor stations across Northeastern USA for 2000–2011.
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improve the spatial coverage of Ta monitors we added the WU Ta sta-
tions to our analysis (which added additional 2535 stations). WU is a
commercial provider of weather information services that incorporates
a network of personal weather stations. These sources have been used
in multiple studies in the past few years (Kloog et al., 2012; Von Klot,
Melly, Coull, Dutton, & Schwartz, 2008). There were between 513 and
2860 daily monitors (monitors increase yearly) operating across the
study area during the study period (see Fig. 1). To check differences in
measurements that might result in biases, we validate the WU data
comparing it to the NCDC stations bymatching each of theWU stations
to the closest NCDC stationwithin 1 km, and computed the correlations.
The average correlation (R2) was 0.958, suggesting that the use of WB
and WU stations is unlikely to cause bias.

2.4. Spatial predictors of air temperature

To improve the predictive ability of the final constructed
model, the following spatial predictors were used in our models:
normalized difference vegetation index (NDVI), percent urban and
elevation.

NDVI: We used the publicly available monthly MODIS NDVI product
(MOD13A3) at 1 km spatial resolution. The monthly resolution was
chosen since NDVI values do not change considerably each month.
Elevation: elevation data were added through a satellite based DEM
(digital elevationmodel) from the National Elevation Dataset (NED)
(Maune, 2007). NED data is publicly available from the U.S. Geolog-
ical Survey (USGS) and contains elevation data across the United
States at a spatial resolution of 1 arc sec. Arc seconds were aggregat-
ed up so that each 1 × 1 km elevation cell represents the mean of
that cell. There are sharp elevation contrasts across such a large
study area and thus we used elevation as a spatial predictor (gener-
ally higher elevations are associated with lower air temperatures).
Percent urban: We used the national land cover data (NLCD) from
2001 (Homer, Huang, Yang,Wylie, & Coan, 2004), available as raster
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fileswith a 30m spatial resolution.We used values classified as built
areas (NLCD values for developed low intensity, developed medium
intensity and developed high intensity) to calculate the percent of
urban areas in each 1 × 1 km grid across the study area.

2.5. Statistical methods

Our Ta predictions are generated by a series of statistical models.We
start by calibrating daily Ts in each grid cell for which both Ta and Ts
values are available (model 1). Each Ta stations is assigned the closest
Ts observation on that specific day (within a distance of 1 km). On
each day we estimate a separate slope in the relationship between Ta
and Ts to capture the day to day temporal variability of the relationship.
Random slopes are used rather than separate slopes for each day
because random slopes are shrinkage estimates that reducewhat other-
wise could be excessive noise in day specific slopes. We performed the
calibrations with both day and night MODIS Ts separately. Since results
were almost identical (see Appendix A)we choose to use the night Ts as
the main predictor since the quality of data is generally better. During
nighttime, the earth surface behaves almost as an isothermal andhomo-
geneous surface. In contrast, during daytime there is a significant direc-
tional anisotropy effect which is due to differences in sun illumination
vs. satellite viewing geometry and different shading effects within
pixels, giving rise to temperature differences as much as 20 °C (Wan &
Dozier, 1996). In model 1 we fit a mixed model regression with day-
specific random intercepts and Ts slopes as follows:

Taij ¼ α þ uj

� �
þ β1 þ vj

� �
Tsij þ β2Percent urbani þ β3Elevationi

þ β4NDVIij þ εij
u jv j

� �
� o oð Þ;Σ½ �

where: Taij is the measured Ta at a spatial site i on a day j; α and uj are
the fixed and random intercepts, respectively, Tsij is the Ts value in the
grid cell corresponding to site i on a day j; β1 and vj are the fixed and
random slopes, respectively. Percent urban is the percent of urban
area in the gird cell, NDVIij is the monthly NDVI value in the grid cell
corresponding to site i for the month in which day j falls. Elevationi is
the mean elevation in the grid cell corresponding to site i. Finally, Σ is
an unstructured variance–covariance matrix for the random effects
and εij is the error term at site i on a day j.

We used ten-fold out of sample cross validation (CV) to validate our
predictions at monitor locations at each step. We randomly divide our
data into 90 and 10% splits ten times. We predict for the 10% data sets
using the model fitted from the remaining 90% of the data. We then
report these computed R2 values. To test our results for bias we regress
themeasured Ta values against the predicted values in each site on each
day. We estimated the model prediction precision by taking the square
root of the mean squared prediction errors (RMSPE) as follows:

RMSPE ¼ N−1XN
i¼1

Pi−Oið Þ2
 !0:5

where:N is the number of observations, Oi is the ith observed value and
Pi is the ith predicted value.

In additionwe estimated prediction errors separately for the tempo-
ral and spatial components of themodel. Temporal R2was calculated by
regressing Delta Ta against Delta predicted:

DeltaTa � Delta predicted

where: Delta Ta is the difference between the actual Ta in place i at time
j and the annualmean Ta at that location, and Delta predicted is defined
similarly for the predicted values generated from the model. Spatial R2

was calculated by regressing the annual overall mean Ta against the
mean predicted Ta at place i (each monitoring location).
We then make use of the model 1 fit to predict Ta in grid cells
without Tameasurements but with available daily Ts satellite measure-
ments. Ts values are not available in all grid/day combinations (due
to retrieval errors, snow, clouds etc.) and thus this step often fails to
provide predictions for many grid cell-day combinations.

To estimate Tawhen no Ts data are available we fit a second model
(model 2) which uses the association of predicted grid cells Ta values
(based on satellite Ts)with surrounding Tamonitors and the association
with values in neighboring grid cells. Since daily Ta for the whole of the
Northeast varies considerably between different geographical regions,
we built 60 km buffers around each Ta monitor. We then use the daily
mean Ta in each buffer as a predictor of temperature in all cells that
fell within the buffer. This parameter denoted mTajr is the mean Ta
across the specific buffer r on a day j. In contrast to the first model, the
second model includes a cell specific fixed slope and intercept:

PredTaij ¼ αi þ βi�mTajr þ εij

where PredTaij is the predicted Ta at a spatial site i on a day j from
thefirst predictionmodel;mTajr is themean Ta across the specific buffer
r on a day j; α are the fixed intercepts and β1 are the fixed slopes that
varies by spatial site i. Statistical Analysis was performed in R (version
2.15) and SAS© (version 9.3). These coefficients were then used to fill
in the predicted Taij on days when the satellite data was missing and
no monitoring data was available in these grid cells.

Finally we ran several sensitivity analyses for a sample year (2011)
to see how the final model predictions perform in smaller geographic
regions (such as single states and cities) and in urban areas vs. rural
areas.We also ran all years to check themodels performance at different
time periods (summer vs. winter).

3. Results

Fig. 2 shows how applying our daily calibration method approach
significantly improves the models fit. The left scatter plot shows the
relationship between monitored Ta and satellite Ts before the daily cal-
ibration (R2 = 0.88) in 2003. The right scatter plot shows the relation-
ship between monitored Ta and the predictions from our calibration
stage in 2003 (cross validated R2 = 0.95).

The first stage calibration models for the Night Ts are presented in
Table 1 (the Day Ts results can be found in Appendix A). The model re-
vealed very high out-of-sample fits with a mean out of sample R2 of
0.947 (P b 0.001, yearly range 0.933–0.958), and as expected a highly
significant association between Ta and the main explanatory variable-
Ts (Table 1). The spatial and temporal CV results also presented very
good fits (Table 1). For the spatial variation in temperature the mean
out-of-sample R2 across yearswas 0.832 and for the temporal variability
the mean out-of-sample R2 was 0.956 (P b 0.001). We found no
bias in our cross validation results (overall mean slope of observed vs.
predicted = 1.00).

The model also yielded very small prediction errors compared to
similar studies (Prihodko & Goward, 1997; Vancutsem et al., 2010;
Zhu et al., 2013): our model resulted in a RMSPE of 2.157 °C and spatial
RMSPE of 1.215 °C indicating strong model performance.

The second model (model 2) also performed extremely well
(Table 2) with a mean R2 across years of 0.940 (P b 0.001, yearly
range 0.902–0.962) which is very high considering that these were
days with neither ground Ta data nor satellite Ts data in the grid cells.

The sensitivity analysis results also show very good overall
model performance across all analyses and are presented in Table 3.
Results from validating the model per state all showed excellent
model performance ranging from R2 = 0.892–0.966 and RMSPE of
1.426 to 2.908. Validating our model in the greater Boston area and
the NYC area resulted in a R2 of 0.960, and 0.913 respectively and
RMSPE of 1.700–2.664. We also examined the performance in rural vs.
urban areas. The model preformed slightly better in urban areas as



Fig. 2. A scatter plot of the air temperature–surface temperature relationship before (a) and after (b) the daily 2003 calibrations.

Table 1
Prediction accuracy: Ten-fold cross validated (CV) results for model 1 predictions (calibration stage using MODIS night surface temperature for 2000–2011).

Yearly dataset CV R2 Intercept a Slope a CV R2
(Spatial component) CV R2

(Temporal component) RMSPEb RMSPEb (Spatial)

2000 0.933 −0.019 ± 0.022 1.001 ± 0.001 0.814 0.945 2.109 1.246
2001 0.943 0.000 ± 0.015 1.000 ± 0.001 0.806 0.958 2.102 1.183
2002 0.953 0.021 ± 0.018 0.999 ± 0.001 0.823 0.964 2.124 1.195
2003 0.958 0.022 ± 0.017 0.999 ± 0.001 0.884 0.964 2.082 1.107
2004 0.951 0.001 ± 0.014 1.000 ± 0.001 0.829 0.960 2.113 1.161
2005 0.946 0.021 ± 0.016 0.999 ± 0.001 0.800 0.954 2.219 1.225
2006 0.945 0.025 ± 0.013 0.999 ± 0.001 0.757 0.955 2.103 1.167
2007 0.945 0.020 ± 0.013 0.999 ± 0.001 0.923 0.952 2.360 1.290
2008 0.947 −0.006 ± 0.011 1.000 ± 0.001 0.828 0.954 2.141 1.238
2009 0.943 0.005 ± 0.009 1.000 ± 0.001 0.850 0.953 2.224 1.209
2010 0.949 0.013 ± 0.009 1.000 ± 0.001 0.870 0.957 2.224 1.253
2011 0.955 −0.005 ± 0.009 1.000 ± 0.001 0.806 0.958 2.083 1.303
Mean 2000–2011 0.947 0.008 ± 0.014 1.000 ± 0.001 0.832 0.956 2.157 1.215

a Presented as parameter estimate ± standard error from linear regression of held-out observations versus predictions.
b Root of the mean squared prediction errors.

Table 3
Prediction accuracy: Ten-fold cross validated (CV) results for model 1 predictions for all
states, sample cities, urban vs. rural and season analysis for a sample year (2005).
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expected (R2 = 0.951, RMSPE = 2.010) as opposed to the rural
areas (R2 = 0.949, RMSPE = 2.010). Finally, looking at differences by
season,we saw that themodel predicts slightly better during thewinter
season than the summer across all years (R2 = 0.944, RMSPE = 1.937
and R2 = 0.879, RMSPE = 1.937 respectively).

Fig. 3 shows the spatial pattern of predicted Ta values from the Ts
models, averaged over 2011 for the metropolitan New-York area.
Mean predicted minimum Ta values for 2011 ranged from 10.87 to
13.35 °C. The figure shows how urban areas appear warmer than the
Table 2
Prediction accuracy: R2 for model 2 temperature predictions
(Final prediction model including locations without air/
surface temperature for 2000–2011).

Yearly dataset R2

2000 0.957
2001 0.945
2002 0.950
2003 0.962
2004 0.926
2005 0.926
2006 0.935
2007 0.949
2008 0.948
2009 0.947
2010 0.936
2011 0.902
Mean 2000–2011 0.940
surrounding areas. Also since we are predicting temperature at a high
spatial resolution one can see the differences in yearly temperature
between dense urban areas such as downtown NYC and nearby areas
such as central park.
Type CV R2 Slope RMSPEa

WV 0.945 0.960 1.738
VA 0.957 0.988 1.745
PA 0.952 0.987 1.798
MD 0.959 1.003 1.769
NY 0.945 1.002 2.159
RI 0.966 0.999 1.605
NJ 0.955 1.013 1.914
DE 0.957 0.994 1.426
CT 0.892 0.988 2.908
MA 0.943 0.998 1.687
VT 0.960 0.985 1.821
NH 0.944 1.001 2.238
ME 0.940 0.987 1.791
Boston 0.960 1.004 1.700
NYC 0.913 1.002 2.664
Rural 0.949 1.001 2.010
Urban 0.951 1.002 2.010
Winter 0.944 1.001 1.937
Summer 0.879 1.001 2.068

a Root of the mean squared prediction errors.

image of Fig.�2


Fig. 3. The spatial pattern of predicted Ta values from the Ts models, averaged over the 2011 for the metropolitan New York area.
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4. Discussion

In this paper we show that by using MODIS Ts data, one can reliably
assess Ta across large regions.We demonstrate this across Northeastern
USAduring the years 2000–2011. This study improves onprevious stud-
ies (Fu et al., 2011; Kloog et al., 2012; Vancutsem et al., 2010; Zhu et al.,
2013) in a few key areas: First, daily calibrations of Ts–Ta results in a
much better fit, since the association varies daily and hence results in
better predictions. This daily calibration approach highlights the differ-
ences in short-term temperature values between grid cells. Second, our
model allows us to predict daily Ta at a very high resolution, in large
areas with varying geographical characteristics. Finally, as opposed to
all previous studies, we calibrate the 24 h Ta with both night Ts and
day Ts and present how both perform well with the daily calibration.
We choose to use night Ts for our final calibration since the product is
overall more stable (Vancutsem et al., 2010). Our results clearly present
the strong association between Ts and Ta, describes very well both the
intra and inter urban temporal and spatial patterns of Ta, and shows
that Ts can be reliably used to predict Ta if modeled appropriately.

Comparison of ourmodel to previous studies using theMODIS satel-
lite to estimate Ta is not straightforward due to the wide span of spatial
and temporal scales and the fact that, to the best of our knowledge, our
model is the only model to predict daily temperature values even when
Ts data is unavailable. Nonetheless, our model performance is excellent
and in good agreement with all previous studies (Benali, Carvalho,
Nunes, Carvalhais, & Santos, 2012; Fu et al., 2011; Kloog et al., 2012;
Vancutsemet al., 2010; Zhu et al., 2013). For example, the prediction ac-
curacy of our models (R2 of 0.95–0.96, RMSPE = 2.157 °C) is signifi-
cantly better than Zhu et al. (2013) (R = 0.86, RMSE = 3.43 °C) even
when we predict for days with no available Ts data (R2 of 0.94) and in
good agreement with the Kloog study (Kloog et al., 2012) (R2 = 0.94).
These newly generated predictions from our model could be used in a
variety of studies since they provide spatially–temporally resolved
estimations of Ta, which are of great importance in areas with low sta-
tion density or with highly variable spatial patterns between stations,
e.g. mountainous regions, areas with large water bodies (such as lakes
and rivers) and rural areas. Such applications could include hydrology,
urban planning, agriculture, metrology, health related studies, among
others. For example in epidemiology studies, such data could be used
to assess the short and long term effect of exposure to temperature
extremes. Such studies tend to use one central meteorological station
to assign temperature exposure (Halonen et al., 2010). This introduces
exposure error, and likely biases the effect estimates downward
(Zeger et al., 2000). Our models will be critical for improving the accu-
racy of these health effect estimates in future epidemiological studies.
Our predicted mean values are in a good agreement with the recorded
annual mean minimum temperatures from Ta stations. For example,
in NYC the annual mean difference between measured (NCDC, 2010)
and predicted Ta was 0.35 °C (11.00°–11.35 °C respectively). In the
Rural area of Harrisonburg, VA there was a slightly larger difference of
1.01 °C (11.98°–10.97 °C respectively).

There are three types of exposure measurement error in classic lon-
gitudinal studies of exposure and health (Zeger et al., 2000). The first
error is derived from the difference between the daily personal expo-
sures of each individual and the daily community average personal
exposure. The second error stems from the difference between the
daily community average personal exposure and the true ambient
value. Finally, the third component of error is due the difference
between the measured and the true ambient value (measurement
error). We anticipate that by using our method which uses satellite
MODIS Ts data to estimate individual level exposures, much of the sec-
ond exposure error type will be minimized.

While the approach presented in this paper uses a hybrid model
methodology incorporating remote sensing, advanced regressions and
interpolations (and focuses on generating predictions for epidemiology)
there are other advanced methodologies common in the climatology
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field that are worth mentioning such as dynamical downscaling and so-
phisticate data assimilation (DA) techniques (Cocke & LaRow, 2000;
Reichle, 2008; Wilby & Wigley, 1997). Dynamical downscaling takes
output from a global or regional climate models (GCM/RCM) and
converts the data into a regional, numerical models with much higher
spatial resolution. There are multiple methods presented in recent
years to reproduce surface temperature and precipitation fields includ-
ing include dynamical modeling by nesting a regional climate
model within a general circulation model (Cocke & LaRow, 2000) and
climate-analog procedures (Houghton, 1996). DA methods combine
data from measurements and models of earth into an optimal estimate
of the geophysical fields of interest. DA systems interpolate and extrap-
olate the remote sensing observations and provide complete estimates
at the scales required by the application, both in time and in the spatial
dimensions (Reichle, 2008). Among the recent applications of DA are
geophysical processes, detection of changes and trends in the earth
system and forecasting. DA uses sophisticated algorithms that can vary
greatly since conditions in different regions and between ocean and
land vary considerably. Our presented models while not as advanced
are much simpler to construct and run (to generate daily predictions)
and thus more suitable for epidemiology studies.

There are some limitations in the present study. For one, since we
use a daily calibration method, it requires continuous, relatively high
spatial resolution daily Ta stations which are not always available in
other regions or areas of the world. Also, the spatial distribution of Ta
stations may change dramatically from year to year in some areas. In
the presented study, there were as few as 513 operating Ta stations in
2000 and as many as 2860 during 2011. Though this does effect the
overall performance of the model (R2 = 0.933 and RMSPE of 2.109 for
2000 vs R2 = 0.955 and RMSPE of 2.083 for 2011), it suggests that the
model can predict reliably even with lower spatial distribution of
stations. A final limitation is that Ts data from MODIS only starts on
March 2000, limiting how far back one can predict Ta.

In conclusion,we demonstrate how Ts can be used reliably to predict
daily Ta at high resolution in large geographical areas even in days
withmissing satellite data. Our results could beused in a variety of stud-
ies since they provide spatially–temporally resolved estimations of Ta.
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Table A1
Prediction accuracy: Ten-fold cross validated R2 for air temperature stage 1 predictions (calibr

Yearly dataset CV R2 Intercepta Slopea

2000 0.937 0.002 ± 0.02 1.001 ± 0.001
2001 0.947 0.017 ± 0.017 1.001 ± 0.001
2002 0.955 0.014 ± 0.017 0.999 ± 0.001
2003 0.961 0.02 ± 0.016 0.999 ± 0.001
2004 0.953 0.027 ± 0.014 0.999 ± 0.001
2005 0.951 0.027 ± 0.013 0.999 ± 0.001
2006 0.949 −0.004 ± 0.012 1.00 ± 0.001
2007 0.946 −0.025 ± 0.012 1.001 ± 0.001
2008 0.953 0.003 ± 0.011 0.999 ± 0.001
2009 0.952 0.003 ± 0.009 1.000 ± 0.001
2010 0.952 −0.001 ± 0.009 1.000 ± 0.001
2011 0.960 −0.006 ± 0.006 1.000 ± 0.000
Mean 2000–2008 0.951 0.006 ± 0.013 1.000 ± 0.001

a Presented as parameter estimate ± SE from linear regression of held-out observations ve
b Root of the mean squared prediction errors.
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